Name _____

Section _____

1a. Perform the substitution $u = e^{3t}$ for the integral $\int \frac{e^{3t}}{\sqrt{1 - e^{6t}}} dt$. Do NOT perform the integration. Fill in your answer here: $\int \underline{\qquad} du$

1b. Perform the integral you obtained in (a). What function in *u* did you get?

1c. Using (b),
$$\int \frac{e^{3t}}{\sqrt{1 - e^{6t}}} dt \stackrel{?}{=}$$

Name _____

Section _____

2a. Perform the substitution $u = \ln(x^2)$ for the integral $\int_1^{e^{\pi/4}} \frac{\sin(\ln(x^2))}{x} dx$.

Be sure to change the integration limits. Fill in your answer below:

2b. Perform the integral you obtained in (a) to evaluate $\int_{1}^{e^{\pi/4}} \frac{\sin(\ln(x^2))}{x} dx$.

Name _____

Section

du

3a. Perform the substitution u = x - 1 for the integral $\int \frac{x(x-2)}{(x-1)^3} dx$. Do NOT perform the integration. Fill in your answer here: \int

3b. Perform the integral you obtained in (a). What function in u did you get?

3c. Using (b),
$$\int \frac{x(x-2)}{(x-1)^3} dx \stackrel{?}{=}$$

Section _____

4a. Perform the substitution
$$u = 5x^2 + 1$$
 for the integral $\int_0^1 x e^{5x^2 + 1} dx$.

Be sure to change the integration limits. Fill in your answer below:

 $\int_{----}^{----} du$

4b. Perform the integral you obtained in (a) to evaluate $\int_0^1 x e^{5x^2+1} dx$.